

Emerging Therapies & Clinical Trial Opportunities for ER-Positive, HER2 Negative Metastatic Breast Cancer and HER2-Positive Breast Cancer

ER-Positive, HER2-Negative Metastatic Breast Cancer

Hal Burstein, MD

I. Background

- Breast cancers that are hormone receptor (HR) positive and human epidermal growth factor receptor 2 (HER2) negative represent the most common subtype of breast cancer (BC) (Blows et al, 2010).
- Endocrine therapy is currently the cornerstone of treatment for advanced HR-positive breast cancer (Partridge et al, 2014; Gradishar et al, 2016); however, not all patients respond to first-line endocrine therapy, and those that do respond eventually experience disease relapse.
- Recurrence can occur multiple years after diagnosis (Colleoni et al, 2016; Cossetti et al, 2015); the most common sites of recurrence are bone, liver, lung, distant lymph nodes, brain, and pleura (Hess & Esteva, 2013; Kennecke et al, 2010).
- Key prognostic factors include degree of HR expression, extent (if any) of prior therapy, visceral vs. bone-only metastatic disease, and disease-free interval since original diagnosis (Taneja et al, 2010; van de Vijver, 2014).
- The 5-year and 10-year survival rates for mBC are 26% and 5% to 10%, respectively (Clements et al, 2012; American Cancer Society, 2016).
- Current clinical research is focused on novel agents that target critical pathways involved in the development of resistance to endocrine therapy.

II. Hormone Therapy

NCCN guidelines for endocrine therapy for Stage IV or recurrent mBC are as follows (Gradishar et al, 2016):

- In premenopausal women without previous exposure to an antiestrogen, initial treatment is with selective ER modulator alone or ovarian suppression/ablation plus endocrine therapy as for postmenopausal women.
- In premenopausal women who received a prior endocrine therapy within 12 months, the preferred second-line therapy is ovarian ablation or suppression followed by endocrine therapy as for postmenopausal women.
- In postmenopausal women, endocrine therapies include nonsteroidal aromatase inhibitors (anastrozole and letrozole), steroidal aromatase inhibitors (exemestane), serum ER modulators (tamoxifen or toremifene), ER down-regulators (fulvestrant), progestin (megestrol acetate), androgens

(fluoxymesterone), and high-dose estrogen (ethinyl estradiol).

• New combination therapies with novel agents that have recently become available include exemestane with everolimus, palbociclib in combination with fulvestrant, and palbociclib with letrozole.

A. Selective estrogen receptor modulators (SERM)

- SERMs (*tamoxifen, raloxifene, and toremifene*), which prevent estrogen binding to its receptors, have been used for more than 30 years to treat hormone receptor-positive BC.
- The most common adverse events associated with SERMs are fatigue, hot flashes, night sweats, vaginal discharge, and mood swings.

B. Selective estrogen receptor degraders (SERD)

- *Fulvestrant* is the only FDA-approved approved SERD (Osborne et al, 2002).
 - Fulvestrant antagonizes and degrades $\text{ER-}\alpha$ and is active in patients who have progressed on antihormonal agents.
 - However, fulvestrant must be administered by intramuscular injections that limit the total amount of drug that can be administered and thus leads to incomplete receptor blockade.
- *ARN-810* is a next-generation, orally bioavailable, ER antagonist that induces proteasomal ER degradation in BC cell lines at picomolar concentrations and tumor regression in tamoxifen-sensitive and resistant BC xenograft models (Lai et al, 2015).
 - In a phase 1 trial of 32 previously treated patients with ER+ HER2- breast cancer, administration of ARN-810 led to a clinical benefit rate (complete response, partial response, or stable disease \geq 6 months) of 41% (Bardia et al, 2014).
 - The most common adverse events were grades 1-2 nausea, diarrhea, fatigue, and abdominal pain; there was one dose-limiting toxicity (grade 3 diarrhea).
 - In phase II, ARN-810 will be studied in patients previously treated with aromatase inhibitors and fulvestrant, including those with ESR1 mutations.
- AZD 9496 is a nonsteroidal small-molecule inhibitor of ER α and is a potent and selective antagonist and down-regulator of ER α in vitro and in vivo in ER-positive models of breast cancer (Weir et al, 2016).
 - AZD9496 is currently being evaluated in a phase I dose-escalation trial in patients with ER+ HER2- BC with or without ESR1 mutations.

C. mTOR inhibitors

- The mTOR inhibitor *everolimus* was approved in 2012 for the treatment of postmenopausal women with advanced ER+ HER2- breast cancer in combination with exemestane, after failure of treatment with letrozole or anastrozole (Baselga et al, 2012).
 - The median PFS was 7.8 months for patients receiving everolimus and 3.2 months for patients receiving placebo.
 - The most common all-grade adverse reactions
 (≥30% of patients) were stomatitis, infections, rash, fatigue, diarrhea, and decreased appetite; the most common grade 3-4 adverse reactions (≥2%) were stomatitis, infections, hyperglycemia, fatigue, dyspnea, pneumonitis, and diarrhea.

III. Novel Agents

A. Cyclin-dependent kinase (CDK) inhibitors

- The CDK 4/6 inhibitor *palbociclib* was approved in 2015 (firstline, in combination with letrozole) and in 2016 (in women with disease progression following endocrine therapy, in combination with fulvestrant) for the treatment of ER+ HER2mBC.
- Abemaciclib is an oral, selective inhibitor of CDK4 and CDK6 that is being investigated in the MONARCH1 phase II trial of 132 women with ER+ HER2- mBC whose disease progressed on or after endocrine therapy and chemotherapy (Dickler et al, 2016).
 - At the 8 month interim analysis, the confirmed ORR was 17.4%, the clinical benefit rate (CR + PR + SD \geq 6 mos) was 42.4%, and the median PFS was 5.7 months.
 - The 5 most common treatment-related AEs were diarrhea, fatigue, nausea, decreased appetite, and abdominal pain; discontinuations due to AEs were infrequent (6.8%).
- *Ribociclib* (LEE011), a CDK4/6 inhibitor, is being evaluated in combination with letrozole in the phase III MONALEESA-2 trial of postmenopausal women with previously untreated ER+ HER2- advanced BC.
 - The trial was stopped early in May 2016 due to a significant improvement in PFS compared with letrozole alone (Novartis, 2016).
 - In a previous phase lb trial, the most common allgrade AEs related to ribociclib were neutropenia (85%), nausea (39%), leukopenia (39%), fatigue (23%), anemia (23%), lymphopenia (23%), and increased creatinine (15%) (Munster et al, 2014).

B. Anti-angiogenic agents

- The data on anti-angiogenic agents, including bevacizumab, sunitinib, ramucirumab, pazopanib, sorafenib, and others, in patients with ER+ HER2- mBC have been mixed, with most trials demonstrating modest clinical benefit and significant toxicity (Rugo, 2012).
- Further translational research and identification of predictive biomarkers may lead to the development of more effective novel anti-angiogenic agents in breast cancer (Bozza et al, 2015).

C. Phosphoinositide 3-kinase (PI3K) inhibitors

- *Buparlisib* is a pan-PI3K inhibitor that was evaluated in combination with fulvestrant in the phase III BELLE-2 trial of 1147 postmenopausal women with refractory ER+ HER2-advanced BC (Baselga et al, 2015).
 - Buparlisib increased median PFS (5.0 to 6.9 months vs placebo), increased ORR (8% vs 12%), and increased clinical benefit rate (42% to 44%).
 - Median PFS, ORR, and CBR were significantly improved in patients with *PIK3CA*-mutant tumors but not in patients without.
 - The most common Grade 3-4 adverse events (\geq 5% of pts) in the buparlisib arm were increased alanine aminotransferase (26 vs 1%), increased aspartate aminotransferase (18 vs 3%), hyperglycemia (15 vs 0.2%), and rash (8 vs 0%).

D. Histone deacetylase (HDAC) inhibitors

- *Entinostat*, an oral isoform selective HDAC inhibitor that targets resistance to hormonal therapies in ER+ BC, was evaluated in combination with exemestane in the randomized ENCORE 301 phase II trial of 130 postmenopausal women (Yardley et al, 2013).
 - Treatment with entinostat improved median PFS to 4.3 months versus 2.3 months with exemestane/placebo and improved overall survival to 28.1 months versus 19.8 months,
 - Fatigue and neutropenia were the most frequent Grade 3-4 toxicities; treatment discontinuation because of adverse events was higher in the entinostat group (11% vs 2%).

E. Checkpoint inhibitors

• *Nivolumab*, an anti-PD-1 antibody, is being evaluated in combination with nab-paclitaxel (ClinicalTrials.gov ID NCT02309177) and in combination with the anti-CTLA4 antibody ipilimumab and the HDAC inhibitor entinostat (NCT02453620) in women with HER2- BC.

References

American Cancer Society (ACS). Cancer facts and figures 2016. http://www.cancer.org/acs/groups/content/@research/ documents/document/acspc-047079.pdf. Accessed August 7, 2016.

Bardia A, Dickler MN, Mayer IA, et al. Phase I study of ARN-810, a novel and potent oral selective estrogen receptor degrader, in postmenopausal women with metastatic estrogen receptor positive (ER+), HER2- breast cancer. Presented at 37th Annual CTRC-AACR San Antonio Breast Cancer Symposium; December 9-13, 2014; San Antonio, TX (Abstract P1-13-01).

Baselga J, Im S-A, Iwata H, et al. PIK3CA status in circulating tumor DNA (ctDNA) predicts efficacy of buparlisib (BUP) plus fulvestrant (FULV) in postmenopausal women with endocrineresistant HR+/HER2-advanced breast cancer (BC): First results from the randomized, phase III BELLE-2 trial. Presented at San Antonio Breast Cancer Symposium; December 8-12, 2015; San Antonio, TX (Abstract S6-01).

Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. *N Engl J Med* 2012 Feb 9;366(6):520-9.

Blows FM, Driver KE, Schmidt MK, et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 2010 May 25;7(5):e1000279.

Bozza C, Fontanella C, Buoro V, Mansutti M, Aprile G. Novel antiangiogenic drugs for the management of breast cancer: new approaches for an old issue? *Expert Rev Clin Pharmacol* 2015 Mar;8(2):251-65.

Clements MS, Roder DM, Yu XQ, Egger S, O'Connell DL. Estimating prevalence of distant metastatic breast cancer: a means of filling a data gap. *Cancer Causes Control* 2012 Oct;23(10):1625-34.

Colleoni M, Sun Z, Price KN, et al. Annual Hazard Rates of Recurrence for Breast Cancer During 24 Years of Follow-Up: Results From the International Breast Cancer Study Group Trials I to V. *J Clin Oncol* 2016 Mar 20;34(9):927-35.

Cossetti RJ, Tyldesley SK, Speers CH, Zheng Y, Gelmon KA. Comparison of breast cancer recurrence and outcome patterns between patients treated from 1986 to 1992 and from 2004 to 2008. *J Clin Oncol* 2015 Jan 1;33(1):65-73.

Dickler MN, Tolaney SM, Rugo HS, et al. MONARCH1: Results from a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as monotherapy, in patients with HR+/HER2- breast cancer, after chemotherapy for advanced disease. *J Clin Oncol* 34, 2016 (suppl; abstr 510).

Gradishar WJ, Anderson BO, Balassanian R, et al. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Breast Cancer. Version 2.2016. ©2016 National Comprehensive Cancer Network. http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Accessed August 7, 2016.

Hess KR, Esteva FJ. Effect of HER2 Status on Distant Recurrence in Early-Stage Breast Cancer. *Breast Cancer Res Treatment* 2013;137(2):449-455.

Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K. Metastatic behavior of breast

cancer subtypes. J Clin Oncol 2010 Jul 10;28(20):3271-7.

Lai A, Kahraman M, Govek S, et al. Identification of GDC-0810 (ARN-810), an Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) that Demonstrates Robust Activity in Tamoxifen-Resistant Breast Cancer Xenografts. *J Med Chem* 2015 Jun 25;58(12):4888-904.

Munster PN, Hamilton EP, Estevez LG, et al. Ph IB study of LEE011 and BYL719 in combination with letrozole in ER+, HER2- breast cancer. *J Clin Oncol* 2014;32 (suppl 26; abstr 143).

Novartis. MONALEESA-2 trial of Novartis' LEE011 (ribociclib) stopped due to positive efficacy results at interim analysis in HR+/ HER2- advanced breast cancer. https://www.novartis.com/news/ media-releases/monaleesa-2-trial-novartis-lee011-ribociclibstopped-due-positive-efficacy. Accessed August 7, 2016.

Osborne CK, Pippen J, Jones SE, et al. Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: results of a North American trial. *J Clin Oncol* 2002 Aug 15;20(16):3386-95.

Partridge AH, Rumble BR, Carey LA, et al. Chemotherapy and targeted therapy for women with human epidermal growth factor receptor 2-negative (or unknown) advanced breast cancer: American Society of Clinical Oncology Clinical Practice Guidelines. *J Clin Oncol* 2014;32:3307-3329.

Rugo HS. Inhibiting angiogenesis in breast cancer: the beginning of the end or the end of the beginning? *J Clin Oncol* 2012 Mar 20;30(9):898-901.

Taneja P, Maglic D, Kai F, Zhu S, Kendig RD, Fry EA, Inoue K. Classical and Novel Prognostic Markers for Breast Cancer and their Clinical Significance. *Clin Med Insights Oncol* 2010 Apr 20;4:15-34.

van de Vijver MJ. Molecular tests as prognostic factors in breast cancer. *Virchows Arch* 2014 Mar;464(3):283-91.

Weir HM, Bradbury RH, Lawson M, et al. AZD9496: An Oral Estrogen Receptor Inhibitor That Blocks the Growth of ER-Positive and ESR1-Mutant Breast Tumors in Preclinical Models. *Cancer Res* 2016 Jun 1;76(11):3307-18.

Yardley DA, Ismail-Khan RR, Melichar B, et al. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. *J Clin Oncol* 2013 Jun 10;31(17):2128-35.

Jointly provided by Postgraduate Institute for Medicine and Carevive Systems, Inc.

This activity is supported by an independent educational grant from Genentech BioOncology.